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Abstract

Neuroimaging has greatly enhanced the cognitive neuroscience understanding of the human brain and
its variation across individuals (neurodiversity) in both health and disease. Such progress has not yet,
however, propelled changes in educational or medical practices that improve people’s lives. We review
neuroimaging findings in which initial brain measures (neuromarkers) are correlated with or predict
future (1) education, learning, and performance in children and adults; (2) criminality; (3) health-
related behaviors; and (4) responses to pharmacological or behavioral treatments. Neuromarkers often
provide better predictions (neuroprognosis), alone or in combination with other measures, than
traditional behavioral measures. With further advances in study designs and analyses, neuromarkers
may offer opportunities to personalize educational and clinical practices that lead to better outcomes for
people.
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Noninvasive neuroimaging has provided remarkable new insights into human brain structure and
function in both health and disease. For over a century, understanding the human brain depended upon
naturally occurring brain injuries or unexpected consequences of neurosurgeries. From clinical cases
such as Leborgne, Phineas Gage, H.M., and commissurotomy patients, we gleaned insights,
respectively, into the roles of left prefrontal cortex in language (Broca, 1861), ventral prefrontal cortex
in decision-making and social behavior (Harlow, 1868/1974), the medial temporal lobe in memory
(Scoville and Milner, 1957), and functional asymmetries between the cerebral hemispheres (Gazzaniga,
1970). Noninvasive neuroimaging has permitted a second wave of discoveries about the brain that has
expanded the horizon of human neuroscience, with examination of typical functions across many
domains of the human mind, from perception and cognition to emotion, social and moral thought, and
economic decision-making. Further, such imaging has offered the first compelling evidence that
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neuropsychiatric and neurodevelopmental disorders reflect fundamental differences in brain structure
and function. Uniquely, neuroimaging has revealed not only universal principles of functional brain
organization, but also neurodiversity: how such brain functions vary across people in relation to age,
sex, personality, culture, and genetics. Here, we review progress in a novel application of
neuroimaging, the use of such measureable neurodiversity to predict future human behavior. Such
prediction may constitute a humanitarian and pragmatic contribution of human cognitive neuroscience
to society, but this contribution will require rigorous science and also ethical considerations.

Neuroscientists, psychologists, and physicians are contemplating how human neuroimaging may
inform basic and clinical research. For basic research, there is discussion about whether neuroimaging
has informed cognitive theories beyond the mapping of psychological functions to neural networks
(e.g., Mather et al., 2013). For clinical research, it is noteworthy that the 2013 revision of the
Diagnostic and Statistical Manual of Mental Disorders (DSM-5), the defining document of diagnosis
from the American Psychiatric Association, was little, if at all, influenced by the over 15,000 magnetic
resonance imaging (MRI) studies of psychiatric disorders listed in PubMed (and this does not include
studies using other methods, such as electroencephalography (EEG), magnetoencephalography (MEG),
or positron emission tomography (PET)). Remarkable advances in genetics have also had little
practical influence as yet on diagnosis or treatment of psychiatric disorders. Because psychiatric
disorders are known to be heritable, and because these disorders must have a brain basis, it is likely that
progress in genetics and neuroimaging will illuminate such disorders in the long run. Here, we will
consider how neuroimaging may contribute to helping people in the nearer future.

This review focuses on structural and functional neuroimaging and considers findings in which an
initial brain measure (a neuromarker) is associated with a future behavioral outcome. Some studies
relate neuromarkers to individual differences in later perceptual or cognitive performance among
typical or healthy people, and have relevance for education and training. Other studies relate
neuromarkers to individual differences among patients with a given diagnosis to future clinical status
or response to treatment (neuroprognosis), and have relevance for neuropsychiatric disorders.

Such correlational or predictive studies differ from other kinds of studies in two main ways. First, in
the case of group studies (e.g., comparison of patient and control groups), neuroimaging differences are
most pronounced when there is greater homogeneity of a brain measure within each group, so that
groups are statistically separable. Conversely, greater heterogeneity of a brain measure within a group
is more likely to yield neuromarkers that correlate with variable outcomes. Second, for studies that
examine response to treatment, individual differences may delineate not the neural systems most
affected by the disorder, but rather heterogeneity among patients in the neural systems that are most
important and variable for how a treatment yields benefits. For example, if a behavioral therapy helps a
patient with a disorder to learn how to regulate thoughts or emotions, then the neuromarkers associated
with treatment response may be in neural networks that support such learning rather than in networks
related to the etiology or progression of the disorder.

Neuroimaging Measures

Noninvasive neuroimaging measures provide indices of human brain structure and function that vary in
their strengths and limitations. This review focuses on measures that maximize spatial information,
specifically MRI-derived measures. Brain structure can be quantified by measuring volumes, thickness,
or density (voxel-based morphometry or VBM). Microstructural properties of white-matter pathways
can be characterized by diffusion tensor imaging (DTI). Brain functions can be quantified via
functional MRI (fMRI) by activation studies that correlate experimental conditions or behavioral
performance with neural activity as indexed by changes in blood oxygenation-level dependent (BOLD)
signals. During a resting state, with no task or stimuli, there are spontaneous fluctuations in
functionally related brain regions that correlate with one another, and the patterns of these correlations
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may reveal intrinsic functional relations of brain regions (Biswal et al., 1995). Resting-state fMRI,
EEG, and MEG can elucidate these networks. Because it measures hemodynamic response, fMRI is
inherently poor in temporal resolution, whereas EEG and MEG provide high temporal resolution (at the
loss of spatial resolution).

For applications in education or medicine, there is a trade-off between measures that are task-
dependent (activation fMRI, MEG, and EEG) versus measures that are task-independent (structural
MRI and DTI, and fMRI, MEG, and EEG resting-state). On the one hand, tasks can selectively invoke
brain responses to salient stimuli (e.g., to print in children with reading difficulty, or to sad facial
expressions in depression). The advantage of this approach is that tasks and stimuli can be tailored to
specifically assay salient mental operations. On the other hand, such tasks demand participant
performance that can result in behavioral confounds, vary in design from study to study, and have not
typically been developed to maximize reliability of measurement. In contrast, structural and resting-
state measures can be acquired in a consistent fashion, have promise for reliability (e.g., Shehzad et al.,
2009; Wonderlick et al., 2009; Vollmar et al., 2010), can accommodate a broad range of participants
(including infants), and are independent of task performance in the scanner.

Analytic Approaches: From Correlation to Individualized Prediction

An ultimate goal of the use of neuromarkers for neuroprognosis is to perform individualized
predictions of educational or health outcomes. Most studies to date have related variation in baseline
brain measures to variation in subsequent outcomes. Given that such analyses hinge on knowledge of
the outcomes, such analyses could be described more as postdiction than prediction (Whelan and
Garavan, 2013). Yet, if neuromarkers are to become useful in practice, they must predict outcomes for
new individuals based on models developed previously with other individuals. A cognitive
neuroscience of prediction, therefore, needs to build on theory and methods that allow for effective
creation, evaluation, and selection of prediction models (Pereira et al., 2009).

The term prediction is used in three different ways in relevant research. First, prediction can refer to a
correlation between two contemporaneous values, such as height predicting weight. Second, prediction
can refer to the correlation of one variable in a group at an initial time-point to another variable in the
same group at a future time-point (an in-sample correlation). Third, prediction can refer to a
generalizable model that applies to out-of-sample individuals. All studies reviewed here relate an initial
brain measure to a future behavioral outcome, and the term correlation refers to in-sample findings,
and the term prediction refers to out-of-sample generalizations.

Such research can be conceptualized as comprising three stages beginning with within-sample
correlations to discover relations of interest, progressing to predictive analyses in which predictions for
individuals are derived from data from other in-sample individuals, and culminating in predictive
analyses in which a model from one sample is used to predict outcomes in an independent sample (
Figure 1). Each stage requires more participants, so that prior stages may justify larger-scale studies.
The vast majority of findings to date are correlational (61 of the 72 reviewed here), but some studies
reported predictive analyses (with only one study having fully independent samples) (Table).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287988/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287988/table/T1/
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Figure 1
Three stages of predictive model identification

1) Discovery Phase. Explore and evaluate associations between baseline neuromarkers and behavioral
outcomes. 2) Cross-Validation Phase. A cross-validation routine is used to separate data into training and
test sets. The model is built using training data and tested on out-of-sample test data. Upon successful
evaluation of the performance of the model and features, all data are used to build a prediction model. 3)
Generalization Phase. A prediction model built via cross-validation is applied to a new data set. The new
data are then used to update the model.

Table

Publications cited in this article that used cross-validation techniques to measure out-of-sample
prediction error

Publication Sample
Size

Application Cross-validation
Method

Learning Model

Whelan et al.,
2014

271 Future adolescent alcohol
misuse

10-Fold Logistic Regression with
Elastic Net

Hoeft et al., 2007 64 Future reading skills LOO Linear Regression

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4287988_nihms639028f1.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287988/figure/F1/
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Publication Sample
Size

Application Cross-validation
Method

Learning Model

Ullman et al.,
2014

62 Future working memory
capacity

Leave One Out
(LOO)

nu-SVR

Ball et al., 2013 48 Response to CBT in GAD,
PD

Out of bag Random forest

Doehrmann et
al., 2013

39 SAD Stratified K-Fold Linear Regression

Hoeft et al., 2011 25 Future reading gains in
dyslexia

LOO Linear SVC

Supekar et al.,
2013

24 Response to math tutoring 4-Fold Linear Regression

Falk et al., 2010 20 Persuasion-induced
behavior change

2-Fold Linear Regression

Siegle et al.,
2012

17
(Cohort
1)

 
20
(Cohort
2)

Response to CBT for
depression

Out of bag Random forest

Bach et al., 2013 17 Future reading skills LOO Discriminant analysis

Costafreda et al.,
2009

16 Response to CBT for
depression

LOO PCA + linear SVM

Open in a separate window

CBT = cognitive behavioral therapy; GAD = generalized anxiety disorder; PD = panic disorder; SAD = social
anxiety disorder

The major limitation with correlational analyses reporting the significance of the overall fit of linear or
multiple regression models to a dataset is that findings are tied to the outcome for a particular group.
From a predictive modeling standpoint, the error from this fit is typically termed the training error,
while the error on an unseen dataset would be called the test or generalization or prediction error.
Training error is always an underestimate of the test error. The quality of a model can be evaluated by
measuring its test error; minimizing this error is the goal of building prediction models. One way to
decompose test error is to describe it as a sum of training error and optimism (Efron, 2004). Optimism
is the difference between the test error, which is always higher, and the training error.

The most common approach for reducing optimism is to use a validation set in which some data are set
aside to estimate the test error. In many studies of brain imaging, this limits the amount of data
available for training because of small sample sizes. A common approach is to use cross-validation in
which one divides a dataset into a number of folds. One fold is held aside as a test set and data from the
remaining folds (training data) are used to train the model. This model is then applied to the test set and
the model error is calculated. This procedure is repeated by considering each fold as a test set. The
average error across the test folds is reported as the generalization error. If the number of folds equal

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287988/table/T1/?report=objectonly
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the number of data points, then only one data point is held out for testing and this is known as Leave
One Out Cross-Validation. In general, this approach is unbiased but typically has high variance in
prediction error (Kohavi, 1995; Rao et al., 2008).

Another practical approach is to randomly split data into training and test sets (e.g., 10% of the data are
in the test set). The splitting is repeated several times. On each iteration, a model is fit on the training
data and tested on the test data. This results in a distribution of prediction errors that can provide a
confidence interval for a given application. However, such procedures can still lead to increased
optimism if models are chosen or their parameters are tuned after peeking at the test results (Koban et
al., 2013). Selecting models and their parameters from cross-validation on the training data can reduce
such optimism. The training data itself can be subjected to cross-validation and subdivided into training
and test sets to determine which model is best suited for the training data. This procedure is called
“nested cross-validation”. Because different models may be selected for each cross-validation split, the
most selected model might be considered to be the “best” model. A variety of learning models coupled
with cross-validation has been used in brain imaging. These range from linear, multiple, and logistic
regression models to approaches such as support vector machines (SVM, Vapnik, 1999; or LASSO,
Tibshirani, 1996), relevance vector machines (RVM, Bishop and Tipping, 2000), and Random Forests
(Breiman, 2001).

The difference between the amount of variability accounted for by within-sample correlations and out-
of-sample predictions is rarely reported. Two within-sample correlational studies (Aharoni et al., 2013;
Demos et al., 2012) were re-analyzed by a different investigator (Poldrack, personal communication),
and the outcome variance accounted for by the generalizable model was far smaller than that for the
within-sample correlation (but see Aharoni et al., 2014). Although in most cases the predictive model
results in a more conservative outcome than the correlational model, the difference varies across
datasets. In all cases, however, predictive analyses will be necessary to translate correlational
observations into educational or clinical practice.

Future Learning and Cognitive Performance in Adults

Variation in initial neuromarkers has been associated with subsequent learning or cognitive
performance, and in most cases these variations occurred in the neural networks associated with the
kind of learning. Larger volumes of the striatum correlated with superior video game skill learning
(Erickson et al., 2010). This correlation was specific to the dorsal striatum volume, did not extend to
the hippocampus or ventral striatum, and accounted for 23% of the variance in learning. The
importance of the striatum for such skill learning is consistent with evidence that lesions of the striatum
impair skill learning (e.g., Heindel et al., 1989). Superior word learning correlated with DTI measures
of the left arcuate fasciculus, a white-matter pathway connecting major left-hemisphere language
regions (Lopez-Barroso et al., 2013).

Brain differences in language-related neural systems have also been related to variation in learning
novel speech distinctions not present in a person’s native language. Superior learning was associated
with anatomical differences, specifically greater asymmetry (left > right) in parietal-lobe volumes and
higher white-matter density in left Heschl’s gyrus (Golestani et al., 2002, 2007). Larger anatomical
structures in the language-dominant left hemisphere may support the rapid temporal processing needed
to learn novel auditory distinctions that occur critically in the first 30–50 ms of nonnative language
sounds. Resting-state functional connectivity has also been associated with variation in auditory
language learning. Better learners of a nonnative speech contrast exhibited greater functional
connectivity (correlation) than poor learners between inferior frontal and parietal regions thought to be
major components of the left-hemisphere language system (Ventura-Campos et al., 2013; other related
studies reviewed in Zatorre, 2013).
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Neuromarkers have also correlated with musical and visual learning. For auditory learning of
microtonal pitch discrimination (with intervals smaller than typically used in musical scales),
individuals who at baseline exhibited higher slopes of fMRI activation in bilateral auditory cortex to
pitch-interval size exhibited greater learning over a two-week training period (Zatorre et al., 2012). The
higher slope of activation may reflect a finer-grained cortical encoding of pitch information that
potentiates more rapid learning during training. People who were better at learning to make fine visual
discriminations had, at baseline, stronger functional connectivity within portions of visual cortex and
between visual cortex and prefrontal association areas (Baldassarre et al., 2012). These regions were
also a subset of the regions that were activated by the discrimination task itself, suggesting that initial
individual differences within the task-evoked neural networks encouraged or discouraged effective
learning.

The above studies examined variation in learning across individuals, but individuals also vary across
time in their performance and learning. Two fMRI studies exploited natural fluctuations in resting-state
BOLD signals in an attempt to distinguish brain states within an individual that were associated with
superior or inferior performance on vigilance and learning tasks. In both studies, stimulus presentation
was triggered via real-time fMRI when BOLD signals in relevant brain regions were hypothesized to
be in optimal or suboptimal states. In the vigilance task, an individual had better vigilance (faster
reaction times) for the appearance of an unpredictable visual target when, before the appearance of the
target, BOLD signal was high in the supplementary motor area (a region associated with motor
planning) and low in components of the default-mode network (a network that is more active during
rest than most tasks and that has been associated with internal self-reflection rather than external
perceptual attention) (Hinds et al., 2013). In the memory task, an individual exhibited superior learning
of scenes when BOLD signals were lower before the appearance of a scene in the posterior
parahippocampal cortex, a region that is selectively responsive to scenes (Yoo et al., 2012). Thus, brain
states could be identified that predicted whether an individual was ready to be vigilant or ready to
learn.

Future Learning and Education in Children

Reading and mathematics are the two foundations of education, and accordingly the focus of school
curriculum from elementary school through high school. The first major education experience for
children is learning to read in early school years, after which they use those reading skills to learn all
other subjects. Some children (5–17%) have developmental dyslexia, which is a persistent difficulty in
learning to read that is not explained by sensory, cognitive, or motivational factors or lack of adequate
reading instruction (Shaywitz, 1998) and that is highly heritable (Pennington et al., 1996). The best
understood psychological cause of dyslexia is a weakness in phonological awareness, the
understanding that spoken words are composed of discrete sounds (phonemes) that can be mapped onto
letters or syllables (graphemes) (Bradley and Bryant, 1978), although several other putative causes
have been identified (reviewed in Gabrieli, 2009).

Brain measures in infants have correlated with future success or failure in language and reading years
before explicit reading instruction. Event-related potentials (ERPs), which are time-locked changes in
electrical activity measured with EEG scalp electrodes, have revealed risk for future language and
reading difficulties in newborns within hours or days of birth. These studies typically involve infants
from families with a history of language or reading difficulty so as to increase the proportion of infants
who will progress to language and reading difficulty. ERP responses to speech sounds within 36 hours
of birth discriminated with over 81% accuracy those infants who would go on to become dyslexic at
age 8 (Molfese, 2000). Newborns, tested within a week of birth, had ERP’s in response to speech
sounds that correlated with language scores at ages 2.5, 3.5, and 5 years of age (Guttorm et al., 2005).
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Some studies have reported that neuroimaging measures enhance or outperform traditional behavioral
measures in forecasting children’s reading abilities in future months and years. One study examined
how children ages 8–12, identified by their teachers as struggling readers, fared from the beginning to
the end of a school year in single-word decoding skills (the ability to read aloud pseudowords on the
basis of phoneme-grapheme mapping rules) (Hoeft et al., 2007). At the beginning of the school year,
these children were evaluated with over a dozen behavioral measures of reading and reading-related
skills, an fMRI task requiring rhyme judgments for pairs of printed words, and a voxel-based
morphometry (VBM) analysis of anatomic grey and white matter densities. The beginning-of-the-year
behavioral measures accounted for 65% of the variance in end-of-year scores, and the brain measures
accounted for 57% of that variance. The combination of behavioral and brain measures accounted for a
significantly better 81% of the variance, demonstrating enhanced forecasting of student reading skills
across a school year.

Among children with dyslexia, there is considerable variation in the degree to which individual
children do or do not compensate for their reading difficulty by closing the gap between their actual
and age-expected reading skills. A longitudinal study of older children (mean age of 14 years)
examined how behavioral measures (17 tests of reading and reading-related skills), fMRI activation for
a word-rhyming task, and DTI indices of white-matter organization predicted which children, over the
next 2.5 years, would compensate or persist in their reading difficulty (Hoeft et al., 2011). None of the
standard behavioral measures correlated with future reading gains, but the brain measures did yield
such correlations (Figure 2). In combination, greater activation in right prefrontal cortex (a region not
typically engaged for reading single words at this age) and greater white-matter organization of the
right superior longitudinal fasciculus predicted with 72% accuracy whether a child would be in the
compensated or persistent group. Multivoxel pattern analysis (MVPA) of whole-brain fMRI activation,
a data-driven pattern classification analysis, yielded over 90% accuracy in classifying whether a
dyslexic child at baseline would belong to the compensating or persistent group 2.5 years later.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287988/figure/F2/
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Figure 2
Functional and Structural Brain Measures Predicting Educational Outcomes

(A–B) fMRI predictor of reading gains in dyslexia. (A) Greater activation for a phonological task in right
inferior frontal gyrus (Rt IFG) predicted (B) greater gains in reading 2.5 years later in dyslexic children;
each red circle is an individual (based on Hoeft et al., 2011). (C–D) MRI predictor of math tutoring gains
in students. (C) Greater grey-matter volume of right (R) hippocampus predicted (D) greater performance
gains in students after 8 weeks of tutoring; each blue circle is an individual (from Supekar, 2013).

Longitudinal studies have also found neuromarkers associated with future reading skills in children
who were not selected on the basis of family history or reading difficulty. In a 5-year longitudinal

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4287988_nihms639028f2.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287988/figure/F2/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287988/figure/F2/
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study, an auditory ERP measure (hemispheric lateralization of late mismatch negativity) in pre-reading
kindergartners significantly improved the forecasting of future reading performance in 2 , 3 , and 5
grades in combination with pre-reading skills (Maurer et al., 2009). Only the ERP measure (and not
any behavioral measure) correlated with future reading performance in 5  grade. A visual ERP study
with pre-reading kindergartners also reported that the combination of behavioral measures and both
ERP and fMRI responses to print explained up to 88% of the variance in 2  grade reading ability
(Bach et al., 2013). These studies suggest that neuromarkers in pre-reading kindergartners may enhance
the identification of children who will struggle to read even before reading instruction begins in school.
This is important because current reading interventions are most effective in young, beginning readers,
and effective intervention prior to reading failure may not only be more effective, but also spare
children the sense of failure that often accompanies early struggles in reading.

In older typical readers ages 9–15, fMRI activations in response to a word-rhyming task was associated
with nonword reading skill up to 6 years in the future, with the specific locations of activations
depending upon the child’s age (McNorgan et al., 2011). In younger children, greater activation in brain
regions associated with phonological recoding (e.g., inferior frontal gyrus) was associated with greater
future reading skill, whereas for older children, greater activation in brain regions associated with
orthographic analysis of print (e.g., fusiform gyrus) was associated with lesser future gains. These
findings underscore how different developmental stages of learning to read, perhaps transitioning from
a younger gaining of skill in single word decoding (print-to-sound correspondence) to an older
mastering of fluent visual analysis of connected print, may invoke relatively different components of
the brain’s reading circuitry.

There is also considerable variation in how well children can learn a second language. For native
Chinese speakers around age 10, greater activation in response to English words and nonwords in left
fusiform gyrus and left caudate correlated with superior English word reading levels a year later (Tan et
al., 2011). The putative visual word form area (VWFA), which is highly responsive to learned print, is
located in the left fusiform gyrus (Dehaene and Cohen, 2011). The leftward lateralization of
neuromarkers may have been related to properties of alphabetic languages such as English, because
there is evidence that variation in microstructural properties of right-hemisphere white-matter pathways
correlated with initial learning of Mandarin Chinese in young adults (Qi et al., 2014). The rightward
lateralization of neuromarkers in native English speakers associated with future successful initial
language learning may reflect the tonal and visuo-spatial properties, respectively, of spoken and written
Mandarin Chinese. Thus, neuromarkers correlated with second-language learning may vary depending
on the kinds of mental resources needed to learn different kinds of languages.

Mathematical problem solving skills are the foundations of later performance in science and
engineering. Academic skill in arithmetic relies on multiple cognitive processes, including working
memory, the mental processes that support the maintenance and manipulation of goal-relevant
information over brief time periods (reviewed in Raghubar et al., 2010). In a longitudinal study,
children ages 6–16 underwent behavioral testing (working memory, reasoning, and arithmetical
abilities) and fMRI while performing a visuospatial working memory task (Dumontheil and Klingberg,
2012). Neuroimaging analyses focused on the intra-parietal sulcus (IPS), a brain region associated with
both visuospatial working memory and numerical representation. The working memory and reasoning
measures were independent predictors of arithmetical performance two years later. The magnitude of
visuospatial working-memory activation in left IPS also predicted future arithmetical performance.
Combining the neuroimaging and behavioral data more than doubled the accuracy of predicting future
mathematical ability compared to use of only behavioral data.

The future growth of working memory ability in the same age range has also been better predicted by a
combination of neuroimaging and behavioral measures than behavioral measures alone (Ullman et al.,
2014). Interestingly, whereas current working memory capacity correlated with activation in frontal
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and parietal regions, future capacity was best predicted by structural and functional measures of the
basal ganglia and thalamus. Specifically, greater activation in the caudate and thalamus and greater
fractional anisotropy (FA) of surrounding white matter as measured by DTI predicted future growth in
working memory over the next two years.

There is increasing interest in improving the effectiveness of learning through teaching that takes into
account variation among students. One study examined whether neuromarkers could identify which
children would benefit from a math-tutoring program for 3  graders (ages 8–9) that encouraged
students to shift from counting to fact retrieval as a basis for arithmetic problem-solving strategy
(Supekar et al., 2013). Individual differences in how much students benefitted from the tutoring
program did not correlate with baseline behavioral scores on tests of intelligence (IQ), working
memory, or mathematical abilities. Conversely, at baseline, greater right hippocampal volume and
resting-state intrinsic functional connectivity between right hippocampus and prefrontal and striatal
regions correlated with future performance improvements (Figure 2).

Future Criminality

The criminal justice system is rife with demands for predictions of future behaviors as judgments are
made about bail, sentencing, and parole. The demonstrated inaccuracy of expert clinical judgments
(Monahan, 1981) has motivated the use of an actuarial approach that estimates risk for future antisocial
behavior based on characteristics such as age, sex, criminal history, and drug use (e.g. Yang et al.,
2010). Building on evidence that impulsivity (behavioral disinhibition) is a major risk factor for
recidivism, brain activations to an impulse-control task (go/no-go task) were examined in 96 male
offenders who were then followed longitudinally (Aharoni et al., 2013). The likelihood that an offender
would be rearrested over a 4-year period doubled if at baseline the offender had low activation in the
anterior cingulate cortex, a region associated with cognitive control and especially the resolution of
cognitive conflict. Whereas the correlation between baseline brain activation and future rearrest was
significant, there was no or weaker correlations for other predictors (age, scores on a psychopathy
checklist, lifetime substance abuse, or behavioral error rate on the scanner task).

Future Health

Studies have examined whether neuromarkers are related to future health-related behaviors, such as
alcohol abuse, drug abuse, or unhealthy eating. Alcohol use by underage drinkers is an important
public health problem because such use in adolescents is risky and also associated with life-long
alcoholism. Heavy or binge drinking is the primary source of preventable morbidity and mortality for
the more than 6 million American college students (Wechsler et al., 2002). Early onset of alcohol use
by age 12 is associated with numerous undesirable outcomes in adolescence (Gruber et al., 1996), and
initiation of drinking before age 15, versus after age 20, quadruples the likelihood of alcoholism (Grant
and Dawson, 1997).

In a longitudinal study, 12–14 year-olds with little or no history of substance abuse performed a go/no-
go task of response inhibition while undergoing fMRI (Norman et al., 2011). About four years later,
these adolescents were divided into two groups who did or did not transition to heavy use of alcohol.
Widespread reductions in baseline activation, including in prefrontal and anterior cingulate cortices,
were found in adolescents who later transitioned to heavy alcohol use relative to those who did not.
Among adolescents ages 16–19 with an ongoing history of substance use disorders, those who
exhibited less prefrontal and greater parietal activation on the same task had higher levels of substance
use over the following 18 months (Mahmood et al., 2013). Overall, the findings suggest that a relative
weakness in the recruitment of anterior brain regions that are most associated with cognitive control of
behavior may be a predisposition for early alcohol use or sustained substance abuse.
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Adolescents who exhibited greater activation in response to monetary rewards in the basal ganglia were
more likely to engage in substance use (alcohol and drugs) a year later (Stice et al., 2013). In contrast,
those who were already using substances at baseline exhibited lesser activation in the basal ganglia at
baseline. These findings indicate that reward systems of the basal ganglia are also involved in
substance abuse, but that brain measures of future risk for substance use may be quite different than
brain measures reflecting the consequence of current use of substances.

The largest study of future adolescent misuse of alcohol followed nearly 700 adolescents and collected
detailed histories, personality measures, genetic information, structural and functional MRI data, and
cognitive performance measures (Whelan et al., 2014). FMRI tasks examined inhibitory control,
reward processing, and facial expressions of emotion. In 271 of these adolescents, a multi-domain
analysis was used to predict future binge drinking. The most robust brain predictors of future binge
drinking came from right precentral and bilateral superior frontal gyri, with contributions from several
structural (gray matter volume) and functional (inhibitory control and reward outcome) features. In the
predictive model, these brain measures were coupled with life events, personality measures, and an
anxiety sensitivity subscale of the substance-use risk profile scale. Any one feature in isolation had
only a modest influence on prediction, and many of the features predicting future misuse were different
from the features dissociating groups of binge drinkers and non-binge drinkers. Such a study highlights
the multiple causal factors for substance abuse, as well as the scale of data needed to predict the future
unfolding of such multifaceted processes.

Healthy eating so as to avoid or reduce obesity is also a major public health concern. Neuroimaging
studies have reported that fMRI activations in response to food-related pictures forecast future changes
in body mass index (BMI) over the next six months to one year. Two studies examined the relation
between baseline fMRI activations and weight gain over the following year in girls identified as having
body image concerns. Activations in response to palatable food occurred in brain regions associated
with reward anticipation (e.g., regions of basal ganglia) or reward valuation (e.g., orbitofrontal cortex).
In one case, dopamine-related genetic variation interacted with blunted brain activation to correlate
with elevated risk for future weight gain (Stice et al., 2010). In another case, lateral orbitofrontal
cortical activation during initial orientation to appetizing food cues correlated with future increases in
BMI over a 1-year period (but behavioral patterns of response did not correlate with BMI increases)
(Yokum et al., 2011).

Another study demonstrated the specificity of brain activations to food cues in relation to future weight
gain (Demos et al., 2012). Women arriving at college saw pictures of food, sexual scenes, and control
pictures during fMRI. At baseline and again towards the end of the school year, the women’s weights
and self-reports of sexual behavior were measured. Greater initial response in the reward-responsive
nucleus accumbens for food pictures correlated with greater BMI gains 6 months later, whereas greater
initial response to sexual scenes correlated with greater sexual desire and more sexual experiences 6
months later.

In a related study, college age-women participated in an fMRI study of brain responses to pictures of
foods and for response inhibition on a go/no-go task, followed by experience sampling via smartphone.
Over the course of one week, they were periodically asked to report their desire to eat food, attempts to
resist the temptation to eat, and whether or not and how much they actually ate (Lopez et al., 2014).
Greater nucleus accumbens activation to food pictures correlated with greater desires for food, more
likelihood to give in to the temptation to eat, and larger amounts eaten. Greater activation of the
inferior frontal gyrus during response inhibition was associated with reduced surrender to temptation
and less eating. Overall, these studies suggest that an interplay between response to food cues that
occurs in reward-sensitive striatal and orbitofrontal regions and response in cognitive control regions of
the lateral prefrontal cortex contributes to future healthy or unhealthy eating patterns.
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Another health-related behavior is the use of sunscreens for protection against sunburn and some forms
of skin cancer. In one study, participants saw slides communicating the importance and proper
application of sunscreen (Falk et al., 2010). Participants also reported recent use of, intentions to use,
and attitudes toward sunscreen. Greater activation in medial prefrontal cortex, a brain region associated
with self-reference, correlated with changes in the use of sunscreen as measured by an unexpected self-
report one week later. Brain measures accounted for about 25% of the change in use of sunscreen
above and beyond self-reported changes in attitudes and intentions following presentation of the health
information during scanning. Activation in medial prefrontal cortex may broadly represent value,
because the magnitude of activation in that brain region (and the striatum) in response to individual
consumer goods was associated with subsequent preferences for choosing those goods (Levy et al.,
2011).

Some studies have examined how brain function at one point in time correlates with mental health
outcomes at future time points, independent of treatment. For example, greater amygdala activation to
emotional facial expressions among patients with depression correlated with reduced symptoms of
depression 6 month later, controlling for initial depression severity and medication status (Canli et al.,
2005). In a memory paradigm with negative pictures, greater baseline activation for successfully
recalled pictures in posterior cingulate cortex and medial prefrontal cortex correlated with greater
improvement in depressive symptoms 18 months later (Foland-Ross et al., 2014).

Future Response to Treatment

Biomarkers in general, and neuromarkers in particular, are not used currently to predict treatment
response for neuropsychiatric disorders despite considerable evidence that any specific
pharmacological or behavioral treatment is likely to be effective for some patients but ineffective for a
considerable number of other patients. Measurement of treatment efficacy varies, but it typically
involves a patient report or clinician observation, often via a structured interview or questionnaire. A
highly effective treatment results in remission, the absence of symptoms, or in a substantial response,
defined as an outcome in which the patient remains somewhat symptomatic but is much improved
(Frank et al., 1991).

Across many neuropsychiatric diagnoses, remission or substantial response occurs in about 50% of
patients for a given therapy. For depression, cognitive behavioral therapy (CBT) is effective in 40–60%
of patients (Hollon et al., 2002) and selective serotonin reuptake inhibitors are effective in 40–60% of
patients, although many patients who fail to respond to an initial treatment will respond to another
treatment or combination of treatments (Souery et al., 2006). Similar 40–60% success rates for a given
pharmacological or behavioral treatment have been reported for generalized anxiety (Pollack et al.,
2003), social anxiety disorder (Otto et al., 2000), and ADHD (Wender, 1998; Biederman et al., 2010).
This variability in treatment response, which is not understood and not simply a consequence of disease
severity, suggests that there are clinically important neurobiological differences among patients sharing
a diagnostic label such that a specific treatment will be effective for some but not other patients.

To a remarkable degree, there is an absence of evidence about which treatment is likely to be effective
for a particular patient. Although patients often do benefit from a second or third sort of attempted
treatment, there is considerable human and economic cost for delaying effective treatment for patients
and families who are often in crisis. The idea of personalized medicine, that people vary in their
response to treatments and that more effective medicine can be practiced by knowing which treatment
is most likely to benefit a particular patient, has been associated often with genetics. It seem plausible,
however, that quantitative brain measures may also reveal variation among patients that provides an
evidence-based rationale for what treatment is most likely to help a particular patient among currently
available treatments.
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Future Response to Pharmacological Treatment

Over 20 studies of depression have reported that pre-treatment neuroimaging measures can correlate
with or predict clinical improvement following pharmacological treatment (reviewed in Pizzagalli et
al., 2011, Fu et al., 2013). In one study, prior to treatment there was reduced subgenual anterior
cingulate cortex (ACC) metabolism measured by PET in patients who subsequently responded poorly
to medicine relative to either healthy controls or patients who responded well to medication and who
exhibited greater-than-normal metabolism (Mayberg et al., 1997). No clinical measure, such as
depression severity, or behavioral measure, such as cognitive performance, distinguished the patients
who would or would not respond to treatment. The subgenual ACC (Brodmann area 25) is especially
salient for depression because it has been shown to be functionally and structurally atypical in
depression (Drevets et al., 1997), and been a target for deep brain stimulation treatment of depression
(Mayberg et al., 2005).

A meta-analysis of 20 studies on depression supported the conclusion that increased baseline activation
of ACC, extending into orbitofrontal cortex, was associated with better treatment response, but that
decreased activation of insula and striatum was also associated with better treatment response (Fu et al.,
2013). In an fMRI activation study in which patients viewed faces with sad facial expressions of
varying intensity, a machine learning approach (SVM and leave-one-out cross-validation) identified
patients who would have remission with 71% sensitivity/86% specificity (Costafreda et al., 2009).
There is also evidence that structural brain measures at baseline were associated with treatment
outcome. Across studies, worse response to treatment has been associated with decreased grey matter
volume in left dorsolateral prefrontal cortex and also in right hippocampus (Fu et al., 2013). Finally,
repetitive transcranial magnetic stimulation (rTMS) is a less common treatment for depression, but
resting-state functional connectivity measures have been associated with clinical response to such
treatment (Salomons et al., 2013). Higher cortico-cortical connectivity and lower cortico-thalamic,
cortico-striatal, and cortico-limbic connectivity at baseline were associated with better treatment
response.

In an open-label study examining the efficacy of treating generalized anxiety disorder with venlafaxine,
patients viewed faces with fearful or neutral expressions. Greater activations for fearful relative to
neutral faces in rostral ACC and lesser activations for fearful relative to neutral faces in left amygdala
both correlated with greater clinical improvement (Whalen et al., 2008). These correlations occurred
despite no activation differences in the rostral ACC or amygdala either between patients and controls or
between pre-treatment and post-treatment in the patients, who did improve clinically in response to
treatment. Such a finding underscores the idea that neuromarkers that are associated with treatment
response need not reflect the same functions as those related to etiology.

Future Response to Behavioral Treatment

Perhaps the best validated kind of behavioral treatment for neuropsychiatric disorders is cognitive
behavioral therapy (CBT), which meta-analyses indicate to be effective for many disorders, including
depression, generalized anxiety disorder, panic disorder, and social anxiety disorder (e.g., Butler et al.,
2006; Hofmann et al., 2012). Multiple studies have reported that CBT is similarly effective as
pharmacological treatments for depression (DeRubeis et al., 2005), generalized anxiety disorder (Mitte,
2005), pediatric anxiety (Walkup et al., 2008), and social anxiety disorder (Heimberg et al., 1998). For
disorders that are treated primarily with medications, CBT has been shown to enhance clinical outcome
relative to other augmentations for obsessive-compulsive disorder (OCD) (Simpson et al., 2013) and
schizophrenia (Grant et al., 2012).

Several neuroimaging studies have reported that pre-treatment neuroimaging measures correlate with
or predict the magnitude of clinical improvement following CBT in unipolar major depression,
schizophrenia, and social anxiety disorder. The initial study relating pre-treatment brain function to
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clinical efficacy of CBT occurred in 14 unmedicated patients with depression who viewed emotionally
negative words prior to treatment. Both less sustained activation in subgenual ACC and more sustained
activation in amygdala were associated with greater improvement in response to CBT (Siegle et al.,
2006). The finding that less sustained activation in subgenual ACC was associated with better future
response to CBT was replicated and extended in a larger study of patients with depression (Siegle et al.,
2012). This study is noteworthy in its use of a model generated from one cohort being used to predict
the outcomes of an independent cohort.

For patients with schizophrenia being treated pharmacologically, about half respond beneficially to
additional CBT treatment (e.g., Wykes et al., 2008). In one set of overlapping studies, patients
receiving CBT exhibited clinical improvements relative to patients who did not receive CBT (Kumari
et al., 2009; Premkumar, et al., 2009; Kumari et al., 2011). The magnitude of clinical benefit among the
patients receiving 6–8 months of CBT correlated with both baseline functional and structural measures.
Patients who exhibited stronger activation in dorsolateral prefrontal cortex (DLPFC) during
performance of a working memory task, and who exhibited stronger DLPFC-cerebellar functional
connectivity in the most demanding condition of the task, derived greater benefit from CBT (Kumari et
al., 2009). In another fMRI study, patients read aloud single words, heard either their own or another
person’s voice that was or was not distorted, and then judged whether they had heard their own voice or
that of another (Kumari et al., 2010). Across several contrasts, greater activation in left inferior frontal
gyrus and lesser inferior parietal and medial prefrontal deactivation were associated with greater CBT
benefit. Greater engagement of prefrontal regions in patients who benefitted more from CBT may be
related to regulatory processes that can support effective CBT. There has also been some evidence for
separable neuromarkers related to CBT response for positive symptoms (excess or distorted normal
functions such as hallucinations or delusions) versus negative symptoms (diminished normal functions
such as apathy or withdrawal) (Premkumar et al., 2009). Importantly, baseline symptom severity did
not correlate with CBT response, so that the neuromarkers provided measures associated with future
CBT benefit that were not clinically evident at baseline.

Current behavioral measures poorly predict treatment outcome in social anxiety disorder, another
disorder often treated with CBT. Prior to CBT, patients viewed angry versus neutral faces or negative
versus neutral scenes during fMRI (Doehrmann et al., 2013). Consistent with the social nature of this
anxiety disorder, activations in response to scenes were not associated with treatment outcome, but
activations to angry relative to neutral faces were associated with CBT outcome. Greater activations in
higher-order visual cortices were predictive of superior treatment outcome (Figure 3). Initial greater
clinical severity accounted for about 12% of the variance in treatment outcome, whereas the
combination of baseline neuroimaging and clinical severity accounted for about 40% of the outcome
variance. Similar findings were observed at a less conservative statistical threshold in prefrontal
cortices, and it is possible that the relations between prefrontal and higher-order visuo-perceptual
cortices may support or constrain the self-regulatory processes that are taught in CBT (i.e., that these
results revealed variation in the neural mechanisms that support CBT response, rather than those of
social anxiety disorder).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287988/figure/F3/
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Figure 3
Functional Brain Measure Predicting A Clinical Outcome

Prior to treatment, patients with social anxiety disorder who exhibited greater posterior activation (left
panel) for angry relative to neutral facial expressions had better clinical response to cognitive behavioral
therapy (CBT) than patients who exhibited lesser activation (right panel) (based on Doehrmann et al.,
2013).

A study of patients with generalized anxiety disorder or panic disorder aimed to develop measures that
might be sensitive to single-subject responses to treatment (Ball et al., 2013). Patients saw negative
scenes and either maintained or reduced (via reappraisal) their emotional response to the scenes. A
random forest classification was used to identify brain regions in which activations best predicted
treatment outcome; there were greater activations for responders than non-responders in hippocampus
during the maintenance of negative images, and in anterior insula, superior temporal, supramarginal,
and superior frontal gyri during reappraisal of negative images. The neuroimaging measures yielded
superior accuracy, sensitivity, and specificity in identifying individual patients as future responders or
non-responders to treatment than did clinical or demographic variables. This study provides an
example of data-driven analyses that are predictive even though the specific patterns of activation are
not readily interpretable in a cognitive neuroscience framework.

For OCD, structural measures at baseline have been associated with variability in response to exposure
therapy (Fullana et al., 2014). Thinner cortex in left rostral ACC at baseline was associated with better
responses to therapy. This same region was thinner overall in patients than controls, so greater
differences from controls were associated with better outcomes. The neuroanatomical locus is similar
to that observed often in studies of depression outcomes, which raises the possibility that similar neural
mechanisms may support behavioral therapies across diagnoses.

The above studies examined the relations between pre-treatment neuromarkers and one kind of
treatment, such as CBT, or a medication, or rTMS. The relevant choice that must be made by a patient
or physician, however, is not whether to pursue one kind of treatment, but rather to select among
alternative treatments. Therefore, an important and practical goal is to examine whether there are
differential predictors of effectiveness for alternative treatments. One study employed PET imaging
prior to patients being randomly assigned to a medication (escitalopram oxalate) or CBT to treat their
depression (McGrath et al., 2013b). Six limbic and cortical regions showed a differential response to
the two treatments, with right anterior insula hypometabolism correlating with future remission to CBT

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287988/figure/F3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287988/figure/F3/
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(and poor medication response), and right anterior insula hypermetabolism correlating with future
remission to medication (but a poor response to CBT) (Figure 4). Subgenual ACC metabolism was
higher in patients who failed to respond to either treatment than in patients who remitted from
depression (McGrath et al., 2013a).

Figure 4
Treatment-Specific Biomarker Candidates for Treatment of Depression

Mean regional activity values for remitters and nonresponders segregated by treatment (either
Escitalopram given as escitalopram oxalate or cognitive behavioral therapy (CBT)) are plotted for the 6
regions showing a significant treatment × outcome analysis of variance interaction effect. Regional
metabolic activity values are displayed as region/whole-brain metabolism converted to z scores. From
McGrath et al., 2013b.

Another study with a small number of pediatric patients with generalized anxiety also found
correlations between pretreatment brain functions and treatment outcomes, but did not find differences
between behavioral (CBT) and pharmacological (fluoxetine) treatments. Greater baseline activation of
the amygdala to negative facial expressions was associated with better symptom improvement
regardless of treatment type (McClure et al., 2007).

Future Relapse for Alcohol, Drug Addiction, Smoking, and Diet

Alcoholism, drug addiction, smoking, and obesity are major public health problems that share a similar
treatment aim, namely abstinence from a substance that is harmful to the brain and body. Several
studies have examined relations between neuromarkers and whether individuals abstain successfully or
relapse into their health problems. Generally, these studies examined patients who recently became
abstinent at the initiation or termination of a treatment program, and then followed these patients over
weeks or months to learn which patients continued to abstain versus those who relapsed. Improved
identification of risk for relapse could support individualized treatment approaches that vary for those
at minimal or maximal risk for relapse.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287988/figure/F4/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4287988_nihms639028f4.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287988/figure/F4/
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At least 60% of patients who seek treatment for an alcohol-use disorder relapse within 6 months
following treatment (Maisto et al., 2006; Udo et al., 2009), and there have been several studies in
which baseline brain measures are associated with future abstinence versus relapse. In two studies of
recently abstinent patients, greater activation of the basal ganglia (putamen), ACC, and medial
prefrontal cortex in response to alcohol-associated visual stimuli was associated with greater likelihood
of relapse 3 weeks or 3 months later (Braus et al., 2001; Grusser et al., 2004). Other measures, such as
self-reported intensity of craving, history of intake, or duration of abstinence before scanning, were not
associated with likelihood of relapse. Both anatomic (Rando et al., 2011) and regional cerebral blood
flow (Noel et al., 2002) studies reported that baseline measures of the medial prefrontal cortex were
associated with likelihood of relapse. Similarly, patients who relapsed exhibited reduced volumes of
medial and/or lateral prefrontal cortex (Durazzo et al., 2011; Cardenas et al., 2011) and reduced white-
matter FA in frontal regions (Sorg et al., 2012) relative to patients who sustained abstinence. Broadly,
greater reward response to alcohol-related stimuli and lesser strength in cognitive control regions were
related to relapse.

Relapse after treatment occurs at an estimated 50% rate within a year among individuals with stimulant
dependence who seek treatment (Miller, 1996). Several neuroimaging studies have reported that
neuromarkers can contribute to identification of future abstinence or relapse. One group of patients
with methamphetamine dependence underwent fMRI 3 or 4 weeks after cessation of drug use and near
completion of a 28-day inpatient program, and were followed for about a year at which point about half
of the patients had relapsed (Paulus et al., 2005). During fMRI, participants attempted to either predict
where a stimulus would appear or to simply note that a stimulus had appeared. None of multiple
sociodemographic, baseline symptom, or use characteristics predicted relapse, but those patients who
would later relapse exhibited greater activation than those who would not relapse in multiple brain
regions, including prefrontal, parietal, and insular cortices. A pattern of activation across right insular,
posterior cingulate, and temporal regions correctly identified 20 of 22 patients who did not relapse, and
17 of 18 patients who did relapse. Other studies have reported correlations between baseline fMRI
activations and future relapse for cocaine use after 1 week (Prisciandaro et al., 2013), after a 10-week
outpatient program (and a better predictor than subjective reports of craving) (Kosten et al., 2006), and
after an 8-week outpatient program (Brewer et al., 2008; Jia et al., 2011). Specific locations of
activations that correlated with future relapse varied across these studies, perhaps reflecting differences
in experimental paradigms, analyses, or participants.

Tobacco smoking is the leading preventable cause of death in the developed world, with one billion
tobacco-related deaths projected for the 21  century (World Health Organization, 2008). Identifying
smokers at high-risk for relapse could influence the design of cessation programs to fit with individual
risk profiles. In one study, adult nicotine-dependent women underwent fMRI while viewing smoking-
related and unrelated pictures before quitting smoking (Janes et al., 2010). The women then made an
attempt to quit smoking, and pre-quit measures were related to subsequent success or failure in
smoking cessation. Greater baseline activation to smoking-related pictures in the insula correlated with
likelihood of future relapse. The identification of insula reactivity as a correlate of future relapse is of
interest because lesions to the insula in smokers were associated with reduced smoking that was
immediate and without relapse (Naqvi et al., 2007). Smokers who did not quit successfully also
exhibited reduced functional connectivity between an insula-containing network and dorsolateral
prefrontal cortex and dorsal ACC, suggesting a weakness in interactions between brain regions
associated with smoking desires with regions associated with cognitive control. A combination of brain
functional data and a behavioral task resulted in 79% accuracy in identifying smokers who would or
would not abstain from smoking. Future success in quitting smoking has also been associated with
grey-matter volumes in cortical and subcortical regions (Froeliger et al., 2010).

st
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Brain measures may also help identify what sort of information presented to people aiming to quit
smoking are likely to be effective. Ads aimed at encouraging people about to try to quit smoking were
presented during fMRI, and relapse was followed for a month (Falk et al., 2011). Greater activation in
medial prefrontal cortex at baseline was associated with successful quitting. The addition of the brain
measures to other measures (self-reported intentions, self-efficacy, and ability to relate to the ads),
more than doubled the accuracy of a model accounting for changes in smoking behavior. In another
study with a large number of smokers, increased activation in brain regions associated with self
reference, especially the medial prefrontal cortex, in response to individually tailored smoking
cessation messages was associated with the probability of quitting 4 months later (Chua et al., 2011).

Healthy eating is a goal for individuals with obesity, and there is evidence that brain measures at
baseline are associated with short- and long-term outcomes in a weight-loss program (Murdaugh et al.,
2012). Obese individuals viewed high-calorie food versus control pictures before and after a 12-week
weight-loss program, with a 9-month follow-up. Greater baseline activation in the nucleus accumbens,
insula, and ACC in response to high-calorie food pictures correlated with lesser weight loss after 12
weeks. Further, less successful weight maintenance at 9 months correlated with greater post-treatment
activation in insula, ventral tegmental area, and other regions. The relevant regions are associated with
interoception (insula), reward (nucleus accumbens, ventral tegmental area), and cognitive control
(anterior cingulate), which are all processes related to dietary decisions.

Future Response to Placebos

Positive medical responses to placebo treatments are often powerful and can rival the effectiveness of
active treatments, such as medicines for depression (e.g., Walsh et al., 2002). Consequently,
exploitation of placebo mechanisms may offer a safe therapeutic approach for some patients, but there
is evidence for considerable variation in response to placebos (Walsh et al., 2002). Most studies of the
brain basis of individual differences in placebo responses have focused on pain, in part because cortical
and subcortical brain regions involved in pain have been relatively well characterized. Placebo
analgesia (the positive influence of placebo on experienced pain) was related to a pattern of increased
activation in several cortical control regions and decreased activation in somatosensory activation
during the anticipation of pain, rather than activation during reported analgesia to pain itself (Wager et
al., 2011). Patients with better future response to placebo treatments exhibited lesser resting-state
functional connectivity between medial prefrontal cortex and insula during a pain-rating task (Hashmi
et al., 2012). Furthermore, greater network efficiency during the resting-state was associated with better
response to future psychologically mediated analgesia related to treatment for chronic knee pain
(Hashmi et al., 2014). A range of other findings also indicate that functional and structural brain
measures may help identify individual patients most likely to benefit from placebo treatments
(reviewed by Koban et al., 2013).

Predicting Individual Futures with Neuromarkers: Hopes and Challenges

As reviewed above, neuromarkers obtained from noninvasive brain imaging have shown great promise
for identifying children and adults more likely to learn well or poorly in particular domains, more likely
to progress to unhealthy (or even criminal) behaviors, and more likely to respond to particular
pharmacological, behavioral, or placebo treatments for many neurodevelopmental and neuropsychiatric
disorders. Although the amount of scientific evidence is modest in many areas (with reading and
depression having perhaps the greatest concentrations of studies to date), there are also numerous
studies reporting that predictive neuromarkers either outperform or significantly enhance traditional
measures of individual variability, such as self-reports, clinical rating scales, or scores on educational
or neuropsychological tests. It is these kinds of studies that express both a practical and humanitarian
possibility of improving lives through recognizing individual differences in brain function and structure
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that greatly influence the diversity of educational and clinical outcomes, and using that recognition to
individually optimize educational and clinical practices.

Because of these hopes, the challenges of translating cognitive neuroscience measures into better
futures for people need to be carefully identified and thoughtfully overcome. First, many of the
reviewed studies were performed with relatively small samples, and in particular many of the older
studies used statistical approaches that were overly liberal by current standards. Although such
pioneering studies must often begin with modest resources because it is their outcomes that justify
larger studies, the translation of such science to practical application now requires larger studies that
can support more rigorous statistics. This is particularly true for studies of neurodiversity that focus on
individual differences because there must be adequate sampling not only of a population as a whole,
but also the diversity of individuals within that population. Second, studies must mature from
correlations between baseline measures and clinical or educational outcomes to predictive models that
apply the outcomes from one group (training set) to another group (test set) and finally to an individual.
This is essential because use of such measures must operate with new individuals for whom a clinical
or educational intervention is being planned. Third, few studies have integrated findings across
multiple imaging modalities, even when the multiple brain measures could be made during a single
MRI session. Combining multiple kinds of neuromarkers may enhance their predictive accuracy.
Fourth, it will be important for future studies to involve plausible, alternative interventions (e.g.,
McGrath et al., 2013b) because the question is less often whether a person should receive help, but
rather which kind of help is most likely to rapidly improve the person’s education, skills, or health.

Neuromarkers will be useful to the extent they outperform, alone or in combination with traditional
measures, measures that are otherwise available. Indeed, multiple studies have reported such value
from neuromarkers, but other studies have not examined whether the neuromarkers significantly
improve predictions above and beyond readily available measures. All forms of brain and behavioral
assessment improve over time, and perhaps a new behavioral assessment will outperform neuromarkers
in the near or distant future. At the same time, behavioral assessments in many educational and clinical
areas have been developed and maintained over many years, so it is unknown when breakthroughs
might occur. Perhaps neuroimaging measures will be also useful tools in developing a new generation
of brain-validated behavioral assessments that can be readily used in schools, hospitals, and medical
offices. At the conceptual limit, there ought to be a strong relation between measures of mind and
brain, such that a new generation of behavioral measures could capitalize on the novel insights of
neuroimaging.

If neuroimaging remains necessary for optimal prediction, there could be concerns about cost and
availability of MRIs or other measures. In this regard, the cost of MRI imaging in particular has raised
concerns about its potential wider use. One solution for availability could be to use more transportable
technologies, such as wireless EEG devices, with assessment paradigms developed through coupled
MRI and EEG studies. Any economic analysis, however, ought to include the costs of current practices
in which patients are often inadvertently directed to treatments that turn out to be ineffective for that
patient (often around half of patients for a given treatment in many cases) or in which children must
demonstrate academic failure before receiving educational intervention. The cost of a
neuropsychological assessment and report for an individual child or adult, for example, often exceeds
that of an MRI.

If neuromarkers are proven to enhance prediction, there will be ethical and societal issues to consider.
Because of their biological nature, brain measures can be overly valued and potentially divert public
and scientific interest in behavioral and social factors (Kagan, 2013). If neuromarkers become more
useful, they will provoke questions about how to most ethically use predictive information to help
people rather than simply select people most likely to succeed. This important concern, however, must
be weighed against the questionable validity of many current practices, such as the finding that parole
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decisions made by experienced judges appear to be greatly influenced by the time of day and proximity
to a meal at which a case is reviewed (Danziger et al., 2011), or that medical schools continue to
conduct interviews for admissions despite evidence that decisions based on such interviews have no
correlation with objective measures of medical school performance (DeVaul et al., 1987; Milstein et al.,
1981). For in-patient treatments for substance abuse, there is little scientific justification for the
prototypical 28-day treatment period. Even an imperfect predictive measure of relapse may lead to
more rational treatment durations that are related to individual variation. Neuromarkers and
neuroprognosis may offer practical and valuable contributions because so many current educational
and medical decisions occur in the absence of scientific evidence that can guide those decisions.

The present review considered mostly studies with relatively short-term longitudinal educational and
clinical outcomes, but future research may also attempt to predict longer-term outcomes. Educational
and medical practices often respond to crisis, such as failure in learning to read or in coping with
depression. Longer-term research may examine whether neuromarkers can help identify children at
early risk, with the hopes of diverting those children away from a trajectory towards failure and crisis
(such as ongoing studies attempting to identify whether infants at familial risk for autism will or will
not progress to autism over the next few years (Bosl et al., 2011; Wolff et al., 2012)). Such early
predictions may require novel forms of intervention (e.g., language learning remediation in 2- or 3-
year-olds that minimizes their difficulty in learning to read as 5- and 6-year-olds) with the hope that
such children never experience the crises as children or adults that now initiate intervention.
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